
Decentralised Communication:
The challenge of balancing
interoperability and privacy.

matthew@matrix.org
http://www.matrix.org

The problem:

Users are locked into
proprietary communication
apps. 
 
They have no control over
their data or their privacy.

Worse still, each app is a
closed silo – forcing users to
install redundant apps and
fragmenting their comms.

I want to communicate with
the apps and services I trust.

6	

Not be forced into specific
services chosen by my

contacts.

7	

If email gives me that
flexibility, why not VoIP and

IM?

8	

Enter Matrix

9	

Open 
Decentralised 
Persistent 
Eventually Consistent 
Cryptographically Secure 
Messaging Database 
with JSON-over-HTTP API. 

10	

Matrix is for: 
Group Chat (and 1:1) 
WebRTC Signalling 
Bridging Comms Silos 
Internet of Things Data 

 
…and anything else which needs to
pubsub persistent data to the world.

11	

Matrix was built to liberate
your scrollback.

12	

1st law of Matrix: 
Conversation history and
Group comms are the 1st

class citizens.

13	

2nd law of Matrix: 
No single party own your
conversations – they are

shared over all participants.

14	

3rd law of Matrix: 
All conversations may be 

end-to-end encrypted. 
 

(real soon now)

15	

Matrix is:
•  Non-profit Open Source Project
•  De-facto Open Standard HTTP APIs:
–  Client <-> Server
–  Server <-> Server
–  Application Services <-> Server

•  Apache-Licensed Open Source Reference Impls
–  Server (Python/Twisted)
–  Client SDKs (iOS, Android, JS, Angular, Python, Perl)
–  Clients (Web, iOS, Android)
–  Application Services (IRC, SIP, XMPP, Lync bridges)

•  A whole ecosystem of 3rd party servers, clients &
services 16	

What does it look like?

17	

Demo time!

http://matrix.org/beta

18	

The Matrix Ecosystem

The	 Matrix	 Specifica9on	 (Client/Server	 API)	

client-‐side	
server-‐side	

Other	 Servers	 and	
Services	

Synapse	
(Reference	 Matrix	

Server)	

Matrix	 Applica9on	
Services	

Other	 Clients	

Matrix	 iOS	
Console	

MatrixKit	 (iOS)	

matrix-‐ios-‐sdk	

Matrix	 Web	
Console	

matrix-‐angular-‐
sdk	

matrix-‐js-‐sdk	

Android	 Console	

matrix-‐android-‐
sdk	

Matrix Architecture

Clients

Home
Servers

Identity
Servers

Application
Servers

Functional Responsibility
•  Clients: Talks simple HTTP APIs to homeservers to

push and pull messages and metadata. May be as
thin or thick a client as desired.

•  Homeservers: Stores all the data for a user - the
history of the rooms in which they participate; their
public profile data.

•  Identity Servers: Trusted clique of servers (think DNS
root servers): maps 3rd party IDs to matrix IDs.

•  Application Services: Optional; delivers application
layer logic on top of Matrix (Gateways, Conferencing,
Archiving, Search etc). Can actively intercept
messages if required.

21	

How does it work?

22	

http://matrix.org/#about

The client-server API
To send a message:
	
curl	 -‐XPOST	 -‐d	 '{"msgtype":"m.text",	 "body":"hello"}'	
"https://alice.com:8448/_matrix/client/api/v1/rooms/
ROOM_ID/send/m.room.message?access_token=ACCESS_TOKEN"	
	
{	
	 	 	 	 "event_id":	 "YUwRidLecu"	
}	

23	

The client-server API
To set up a WebRTC call:
	
curl	 -‐XPOST	 –d	 '{\	
	 	 "version":	 0,	 \	
	 	 "call_id":	 "12345”,	 \	
	 	 "offer":	 {	
	 	 	 	 "type"	 :	 "offer”,	
	 	 	 	 "sdp"	 :	 "v=0\r\no=-‐	 658458	 2	 IN	 IP4	 127.0.0.1…"	
	 	 }	
}'	 "https://alice.com:8448/_matrix/client/api/v1/rooms/
ROOM_ID/send/m.call.invite?access_token=ACCESS_TOKEN"	
	
{	 "event_id":	 "ZruiCZBu”	 }	

24	

Basic 1:1 VoIP Matrix Signalling

	 	 	 	 Caller	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Callee	
m.call.invite	 -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐>	
m.call.candidate	 -‐-‐-‐-‐-‐-‐-‐-‐>	
[more	 candidates	 events]	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 User	 answers	 call	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <-‐-‐-‐-‐-‐-‐	 m.call.answer	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 [media	 flows]	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <-‐-‐-‐-‐-‐-‐	 m.call.hangup	

25	

The client-server API
To persist some MIDI:
	
curl	 -‐XPOST	 –d	 '{\	
	 	 	 	 "note":	 "71",\	
	 	 	 	 "velocity":	 68,\	
	 	 	 	 "state":	 "on",\	
	 	 	 	 "channel":	 1,\	
	 	 	 	 "midi_ts":	 374023441\	
}'	 "https://alice.com:8448/_matrix/client/api/v1/rooms/
ROOM_ID/send/org.matrix.midi?access_token=ACCESS_TOKEN"	
	
{	 "event_id":	 “ORzcZn2”	 }	

26	

The server-server API
curl	 –XPOST	 –H	 ‘Authorization:	 X-‐Matrix	 origin=matrix.org,key=”898be4…”,sig=“j7JXfIcPFDWl1pdJz…”’	 –d	 ‘{	
	 	 	 	 "ts":	 1413414391521,	
	 	 	 	 "origin":	 "matrix.org",	
	 	 	 	 "destination":	 "alice.com",	
	 	 	 	 "prev_ids":	 ["e1da392e61898be4d2009b9fecce5325"],	
	 	 	 	 "pdus":	 [{	
	 	 	 	 	 	 	 	 "age":	 314,	
	 	 	 	 	 	 	 	 "content":	 {	
	 	 	 	 	 	 	 	 	 	 	 	 "body":	 "hello	 world",	
	 	 	 	 	 	 	 	 	 	 	 	 "msgtype":	 "m.text"	
	 	 	 	 	 	 	 	 },	
	 	 	 	 	 	 	 	 "context":	 "!fkILCTRBTHhftNYgkP:matrix.org",	
	 	 	 	 	 	 	 	 "depth":	 26,	
	 	 	 	 	 	 	 	 "hashes":	 {	
	 	 	 	 	 	 	 	 	 	 	 	 "sha256":	 "MqVORjmjauxBDBzSyN2+Yu+KJxw0oxrrJyuPW8NpELs"	
	 	 	 	 	 	 	 	 },	
	 	 	 	 	 	 	 	 "is_state":	 false,	
	 	 	 	 	 	 	 	 "origin":	 "matrix.org",	
	 	 	 	 	 	 	 	 "pdu_id":	 "rKQFuZQawa",	
	 	 	 	 	 	 	 	 "pdu_type":	 "m.room.message",	
	 	 	 	 	 	 	 	 "prev_pdus":	 [
	 	 	 	 	 	 	 	 	 	 	 	 ["PaBNREEuZj",	 "matrix.org"]	
],	
	 	 	 	 	 	 	 	 "signatures":	 {	
	 	 	 	 	 	 	 	 	 	 	 	 "matrix.org":	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "ed25519:auto":	 "jZXTwAH/7EZbjHFhIFg8Xj6HGoSI+j7JXfIcPFDWl1pdJz+JJPMHTDIZRha75oJ7lg7UM+CnhNAayHWZsUY3Ag"	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 },	
	 	 	 	 	 	 	 	 "origin_server_ts":	 1413414391521,	
	 	 	 	 	 	 	 	 "user_id":	 "@matthew:matrix.org"	
	 	 	 	 }]	
}’	 https://alice.com:8448/_matrix/federation/v1/send/916d630ea616342b42e98a3be0b74113	
	
	
	

27	

Application Services (AS)
•  Extensible custom application logic
•  They have privileged access to the server (granted

by the admin).
•  They can subscribe to wide ranges of server

traffic (e.g. events which match a range of rooms,
or a range of users)

•  They can masquerade as 'virtual users'.
•  They can lazy-create 'virtual rooms'
•  They can receive traffic by push.

28	

Uses for AS API
•  Gateways to other comms platforms 

e.g.: all of Freenode is available at #freenode_#foo:matrix.org
•  Data manipulation

–  Filtering
–  Translation
–  Indexing
–  Mining
–  Visualisation
–  Orchestration

•  Application Logic (e.g. bots, IVR services)
•  …

29	

A trivial application service
import	 json,	 requests	 	 #	 we	 will	 use	 this	 later	
from	 flask	 import	 Flask,	 jsonify,	 request	
app	 =	 Flask(__name__)	
	
@app.route("/transactions/<transaction>",	 methods=["PUT"])	
def	 on_receive_events(transaction):	
	 	 	 	 events	 =	 request.get_json()["events"]	
	 	 	 	 for	 event	 in	 events:	
	 	 	 	 	 	 	 	 print	 "User:	 %s	 Room:	 %s"	 %	 (event["user_id"],	 event["room_id"])	
	 	 	 	 	 	 	 	 print	 "Event	 Type:	 %s"	 %	 event["type"]	
	 	 	 	 	 	 	 	 print	 "Content:	 %s"	 %	 event["content"]	
	 	 	 	 return	 jsonify({})	
	
if	 __name__	 ==	 "__main__":	
	 	 	 	 app.run()	

30	

31	

Matrix Bridging with ASes

Existing App

Current Progress
•  Funded May 2014
•  Launched alpha Sept 2014
•  Entered beta Dec 2014
•  Stable v0.9 Beta May 2015
•  July 2015: v1.0 release?!

32	

What's next?
•  Rolling out E2E encryption
•  Reusable web UI components and improving the web

client
•  Multi-way VoIP
•  Lots more Application Services
•  Landing V2 APIs
•  Use 3rd party IDs by default
•  Yet more performance work
•  Spec polishing
•  New server implementations!

33	

We need help!!

34	

•  We need people to try running their own
servers and join the federation.

•  We need people to run gateways to their
existing services

•  We need feedback on the APIs.
•  Consider native Matrix support for new

apps
•  Follow @matrixdotorg and spread the

word!

35	

Privacy in Matrix

36	

Two basic types of privacy: 
 
1. Can attackers see what  
 you're saying? 
 
2. Can attackers see who  
 you're talking to, and when?

37	

Matrix can protect the
contents of what you're
saying using end-to-end
encryption. 
 
Neither the servers nor the
network can decrypt the data;
only invited clients.

38	

Introducing Olm 
(new as of today!!!)

39	

https://github.com/matrix-org/olm

Olm
•  Apache License C++11 implementation of

Axolotl, exposing a C API.

•  Axolotl is Open Whisper System's better-
than-OTR cryptographic ratchet, as used
by TextSecure, Pond, WhatsApp etc.

•  Supports encrypted asynchronous group
communication.

•  130KB x86-64 .so, or 208KB of asm.js
40	

41	

OLM	 C	 API	

Account	
•  Keys	

	 Session	
•  Ini9al	 Key	 Exchange	

	 Ratchet	
	
•  Encrypt	
•  Decrypt	

	 Crypto	
	

•  Curve25519	
•  AES	
•  SHA256	

42	

Alice Bob
Alice and Bob both generate identity (I) &
ephemeral (E) elliptic curve key pairs

Initial Shared Secret (ISS) =

ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Discard Ea
Derive chain key from ISS (HMAC)
Derive message key (K0) from chain key
(HMAC)
Derive new chain key ß hash ratchet
M0 = Message plaintext
C0 = Authenticated Encryption of (M0, K0)
Ra0 = generate random ratchet key pair
Ja0 = incremental counter for each hash
ratchet advancement

Ia, Ea, Eb, Ra0, Ja0, C0

43	

Alice Bob
Compute same Initial Shared Secret =

ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Compute same K0
M0 = Authenticated decryption of (C0, K0)

To respond, B starts new ratchet chain:
Rb1 = generate random ratchet key pair
New Initial Shared Secret =
 ECDH(Ra0, Rb1) ß ECDH Ratchet

C0 = Authenticated Encryption of (M, K0)
Ra0 = generate random ratchet key
Ja0 = incremental counter for each hash
ratchet advancement

Rb1, Jb1, C1

Demo!

45	

http://matrix.org/~markjh/olm/
javascript/demo.html

Group chat
•  Adds a 3rd type of ratchet, used to

encrypt group messages.

•  Establish 'normal' 1:1 ratchets between
all participants in order to exchange the
initial secret for the group ratchet.

•  All receivers share the same group
ratchet state to decrypt the room.

46	

Flexible privacy with Olm
•  Users can configure rooms to have:
– No ratchet (i.e. no crypto)
– Full PFS ratchet
– Selective ratchet

•  Deliberately re-use ratchet keys to support
paginating partial eras of history.

•  Up to participants to trigger the ratchet (e.g.
when a member joins or leaves the room)

– Per-message type ratchets
47	

So, what about protecting
metadata? 

 
(i.e. hiding who's talking to who and when?)

48	

Matrix is all about
pragmatically fixing today's

vendor lock-in problem. 
 

You can't bridge existing
networks without exposing

who's talking to who.
49	

50	

Bridges expose metadata

Existing App

Unavoidable
Metadata leak!

That said, Matrix also
exposes metadata on Home

Servers:

51	

52	

Home Servers expose
metadata too

Can we do better? 
 

Apps like Pond show that you
can obfuscate metadata quite

effectively:

53	

54	

Pond

Tor	

Pond servers
(Tor hidden services)

Pond clients,
storing encrypted
history

Pond preserves sender privacy
through Group Signatures – only the
client can decrypt who the message
was from.

Matrix was designed to
evolve and support future
network architectures and

privacy strategies.

55	

Thought Experiment: 
Could Matrix adopt a 
Pond-like strategy?

56	

• Move home servers onto the
client.
• Use pond-style Tor hidden

services for store-and-forward
of encrypted messages.
• Migrate incrementally from

'classic' DAG federation.

57	

58	

Matrix with Pond strategy

Existing App

Tor	

Advantages over pure Pond
•  Supports any and all Matrix clients via the

existing standard client-server API

•  Supports decentralised conversation history
by tunnelling HS federation over Pond

•  Supports bridging to other networks via
existing Matrix AS API or classic Matrix
Federation – at expense of privacy. Mitigated
by disabling bridging/federation per-room.

59	

Thank you! 
 

matthew@matrix.org 
http://matrix.org  
@matrixdotorg 

60	

Federation Design #1
•  No single point of control for chat rooms.
•  Any homeserver can publish a reference to a chat

room (although typically the address is the
homeserver of the user who created the room).

•  Room addresses look like:
#matrix:matrix.org

(pronounced hash-matrix-on-matrix-dot-org)

•  The IP of the matrix.org homeserver is discovered
through DNS (SRV _matrix record if available,
otherwise looks for port 8448 of the A record).

61	

Federation Design #2
•  When a user joins a room, his HS queries the HS specified in

the room name to find a list of participating homeservers via
a simple GET

•  Messages form a directed acyclic graph (DAG) of
chronologicity, each crypto-signed by the origin HS

•  The user's HS pulls in messages via GETs from participating
HSs by attempting to walk the DAG

•  Each HS caches as much history as its users (or admin)
desires

•  When sending a message, the HS PUTs to participating
homeservers (currently full mesh, but fan-out semantics using
cyclical hashing in development)

62	

Identity Design
•  We don't want to be yet another identity system (e.g.

JIDs)
•  So we aggregate existing 3rd party IDs (3PID) and map

them to matrix IDs (MXIDs) by Identity Servers,
whose use in public is strictly optional.

•  And so login and user discovery is typically done
entirely with 3rd party IDs.

•  ID servers validate 3rd party IDs (e.g. email, MSISDN,
Facebook, G+) and map them to MXIDs. MXIDs look
like:

@matthew:matrix.org
 63	

Security Design #1
•  Server-server traffic is mandatorily TLS from the outset

•  Can use official CA certs, but automagically self-sign and submit
certs to matrix ID servers as a free but secure alternative

•  Server-client traffic mandates transport layer encryption other than
for tinkering

•  Clients that support PKI publish their public keys, and may encrypt
and sign their messages for E2E security.

•  "Well behaved" clients should participate in key escrow servers to
allow private key submission for law enforcement.

•  End-to-end encryption for group chat is supported through a per-
room encryption key which is shared 1:1 between participating
members

64	

Security Design #2
•  SPAM is contained by mandating invite

handshake before communication
•  Invite handshakes are throttled per user
•  Homeservers and users may be blacklisted on

identity servers
•  ID servers authenticating 3PIDs are obligated to

mitigate bulk registration of users via CAPTCHAs
or domain-specific techniques (e.g. 2FA SMS for
MSISDNs)

65	

•  Still in development; some early prototypes

•  "Passive AS-API" Builds on the client-server API

–  Service registers a URL for inbound events to be PUT to

–  Allows a service to register for traffic on behalf of a namespace of
virtual users and virtual rooms

–  Adds "superuser" permissions to subscribe to arbitrary filters of
events on the homeserver, and inject arbitrary events

–  Modeled loosely after IRC Services

•  Also: Active AS API for intercepting inbound events on a HS,
and Storage API for exposing existing conversation DBs to
Matrix via a HS.

Application Services: Spec & API

66	

•  matrix.org runs a homeserver.

•  Matrix/SMS gw AS is registered to the homeserver,
masquerading for the 'sms.matrix.org' domain.

•  @447968722968:sms.matrix.org routes to the
homeserver from anywhere in Matrix, which passes
events for *:sms.matrix.org through to the AS

•  Matrix/SMS Gateway then relays via SMS
aggregators to send SMS to +447968722968

•  The reverse path is symmetrical, with the Matrix/
SMS AS injecting events into the HS on behalf of
@447968722968:sms.matrix.org

AS Example: Matrix/SMS Gateway

67	

•  Similarly, AS can implement a SIP gateway, posing
as a range of virtual matrix users.

•  Events such as 'm.call.invite' and
'm.call.candidates' are PUT to the AS by the HS

•  AS converts directly into SIP signalling (reINVITEing
to advertise new ICE candidates)

•  Media flows out-of-band to Matrix as typical
WebRTC SRTP.

•  We've already written a basic Matrix/Verto gateway
(using client-service API – see matrix.org/blog)

AS Example: Matrix/SIP Gateway

68	

Why not XMPP?
•  We used to use XMPP (ejabberd, OpenFire, Spectrum,

psyced, Psi, Pidgin, ASmack, Spark, XMPP.Framework)
•  We built an alternative because:

–  Single server per MUC is single point of control
–  Synchronised history is a very 2nd class citizen
–  Stanzas aren't framed or reliably delivered
–  XMPP stacks are not easy to implement in a web environment
–  Jingle is complicated and exotic
–  XML is needlessly verbose and unwieldy
–  The baseline feature-set is too minimal
–  JIDs haven't taken off like Email or MSISDNs
–  Not designed for mobile use cases (e.g. push; low bw)
–  Well documented spam and identity/security issues
–  ejabberd

