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The problem:



Users are locked into 
proprietary communication 
apps. 
 
They have no control over 
their data or their privacy.



Worse still, each app is a 
closed silo – forcing users to 
install redundant apps and 
fragmenting their comms.





I want to communicate with 
the apps and services I trust.
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Not be forced into specific 
services chosen by my 

contacts.
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If email gives me that 
flexibility, why not VoIP and 

IM?
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Enter Matrix
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Open 
Decentralised 
Persistent 
Eventually Consistent 
Cryptographically Secure 
Messaging Database 
with JSON-over-HTTP API. 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Matrix is for: 
Group Chat (and 1:1) 
WebRTC Signalling 
Bridging Comms Silos 
Internet of Things Data 

 
…and anything else which needs to 
pubsub persistent data to the world.
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Matrix was built to liberate 
your scrollback.
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1st law of Matrix: 
Conversation history and 
Group comms are the 1st 

class citizens.
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2nd law of Matrix: 
No single party own your 
conversations – they are 

shared over all participants.
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3rd law of Matrix: 
All conversations may be 

end-to-end encrypted. 
 

(real soon now)
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Matrix is:
•  Non-profit Open Source Project
•  De-facto Open Standard HTTP APIs:
–  Client <-> Server
–  Server <-> Server
–  Application Services <-> Server

•  Apache-Licensed Open Source Reference Impls
–  Server (Python/Twisted)
–  Client SDKs (iOS, Android, JS, Angular, Python, Perl)
–  Clients (Web, iOS, Android)
–  Application Services (IRC, SIP, XMPP, Lync bridges)

•  A whole ecosystem of 3rd party servers, clients & 
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What does it look like?
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Demo time!

http://matrix.org/beta
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The Matrix Ecosystem

The	  Matrix	  Specifica9on	  (Client/Server	  API)	  

client-‐side	  
server-‐side	  

Other	  Servers	  and	  
Services	  

Synapse	  
(Reference	  Matrix	  

Server)	  

Matrix	  Applica9on	  
Services	  

Other	  Clients	  

Matrix	  iOS	  
Console	  

MatrixKit	  (iOS)	  

matrix-‐ios-‐sdk	  

Matrix	  Web	  
Console	  

matrix-‐angular-‐
sdk	  

matrix-‐js-‐sdk	  

Android	  Console	  

matrix-‐android-‐
sdk	  



Matrix Architecture

Clients

Home 
Servers

Identity
Servers

Application
Servers



Functional Responsibility
•  Clients: Talks simple HTTP APIs to homeservers to 

push and pull messages and metadata.  May be as 
thin or thick a client as desired.

•  Homeservers: Stores all the data for a user - the 
history of the rooms in which they participate; their 
public profile data.

•  Identity Servers: Trusted clique of servers (think DNS 
root servers): maps 3rd party IDs to matrix IDs.

•  Application Services: Optional; delivers application 
layer logic on top of Matrix (Gateways, Conferencing, 
Archiving, Search etc). Can actively intercept 
messages if required.
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How does it work?
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http://matrix.org/#about



The client-server API
To send a message:
	  
curl	  -‐XPOST	  -‐d	  '{"msgtype":"m.text",	  "body":"hello"}'	  
"https://alice.com:8448/_matrix/client/api/v1/rooms/
ROOM_ID/send/m.room.message?access_token=ACCESS_TOKEN"	  
	  
{	  
	  	  	  	  "event_id":	  "YUwRidLecu"	  
}	  
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The client-server API
To set up a WebRTC call:
	  
curl	  -‐XPOST	  –d	  '{\	  
	  	  "version":	  0,	  \	  
	  	  "call_id":	  "12345”,	  \	  
	  	  "offer":	  {	  
	  	  	  	  "type"	  :	  "offer”,	  
	  	  	  	  "sdp"	  :	  "v=0\r\no=-‐	  658458	  2	  IN	  IP4	  127.0.0.1…"	  
	  	  }	  
}'	  "https://alice.com:8448/_matrix/client/api/v1/rooms/
ROOM_ID/send/m.call.invite?access_token=ACCESS_TOKEN"	  
	  
{	  "event_id":	  "ZruiCZBu”	  }	  
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Basic 1:1 VoIP Matrix Signalling

	  	  	  	  Caller	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Callee	  
m.call.invite	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐>	  
m.call.candidate	  -‐-‐-‐-‐-‐-‐-‐-‐>	  
[more	  candidates	  events]	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  User	  answers	  call	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <-‐-‐-‐-‐-‐-‐	  m.call.answer	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  [media	  flows]	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <-‐-‐-‐-‐-‐-‐	  m.call.hangup	  
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The client-server API
To persist some MIDI:
	  
curl	  -‐XPOST	  –d	  '{\	  
	  	  	  	  "note":	  "71",\	  
	  	  	  	  "velocity":	  68,\	  
	  	  	  	  "state":	  "on",\	  
	  	  	  	  "channel":	  1,\	  
	  	  	  	  "midi_ts":	  374023441\	  
}'	  "https://alice.com:8448/_matrix/client/api/v1/rooms/
ROOM_ID/send/org.matrix.midi?access_token=ACCESS_TOKEN"	  
	  
{	  "event_id":	  “ORzcZn2”	  }	  
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The server-server API
curl	  –XPOST	  –H	  ‘Authorization:	  X-‐Matrix	  origin=matrix.org,key=”898be4…”,sig=“j7JXfIcPFDWl1pdJz…”’	  –d	  ‘{	  
	  	  	  	  "ts":	  1413414391521,	  
	  	  	  	  "origin":	  "matrix.org",	  
	  	  	  	  "destination":	  "alice.com",	  
	  	  	  	  "prev_ids":	  ["e1da392e61898be4d2009b9fecce5325"],	  
	  	  	  	  "pdus":	  [{	  
	  	  	  	  	  	  	  	  "age":	  314,	  
	  	  	  	  	  	  	  	  "content":	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  "body":	  "hello	  world",	  
	  	  	  	  	  	  	  	  	  	  	  	  "msgtype":	  "m.text"	  
	  	  	  	  	  	  	  	  },	  
	  	  	  	  	  	  	  	  "context":	  "!fkILCTRBTHhftNYgkP:matrix.org",	  
	  	  	  	  	  	  	  	  "depth":	  26,	  
	  	  	  	  	  	  	  	  "hashes":	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  "sha256":	  "MqVORjmjauxBDBzSyN2+Yu+KJxw0oxrrJyuPW8NpELs"	  
	  	  	  	  	  	  	  	  },	  
	  	  	  	  	  	  	  	  "is_state":	  false,	  
	  	  	  	  	  	  	  	  "origin":	  "matrix.org",	  
	  	  	  	  	  	  	  	  "pdu_id":	  "rKQFuZQawa",	  
	  	  	  	  	  	  	  	  "pdu_type":	  "m.room.message",	  
	  	  	  	  	  	  	  	  "prev_pdus":	  [	  
	  	  	  	  	  	  	  	  	  	  	  	  ["PaBNREEuZj",	  "matrix.org"]	  
	  	  	  	  	  	  	  	  ],	  
	  	  	  	  	  	  	  	  "signatures":	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  "matrix.org":	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  "ed25519:auto":	  "jZXTwAH/7EZbjHFhIFg8Xj6HGoSI+j7JXfIcPFDWl1pdJz+JJPMHTDIZRha75oJ7lg7UM+CnhNAayHWZsUY3Ag"	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  },	  
	  	  	  	  	  	  	  	  "origin_server_ts":	  1413414391521,	  
	  	  	  	  	  	  	  	  "user_id":	  "@matthew:matrix.org"	  
	  	  	  	  }]	  
}’	  https://alice.com:8448/_matrix/federation/v1/send/916d630ea616342b42e98a3be0b74113	  
	  
	  
	  

27	  



Application Services (AS)
•  Extensible custom application logic
•  They have privileged access to the server (granted 

by the admin).
•  They can subscribe to wide ranges of server 

traffic (e.g. events which match a range of rooms, 
or a range of users)

•  They can masquerade as 'virtual users'.
•  They can lazy-create 'virtual rooms'
•  They can receive traffic by push.
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Uses for AS API
•  Gateways to other comms platforms 

e.g.: all of Freenode is available at #freenode_#foo:matrix.org
•  Data manipulation

–  Filtering
–  Translation
–  Indexing
–  Mining
–  Visualisation
–  Orchestration

•  Application Logic (e.g. bots, IVR services)
•  …
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A trivial application service
import	  json,	  requests	  	  #	  we	  will	  use	  this	  later	  
from	  flask	  import	  Flask,	  jsonify,	  request	  
app	  =	  Flask(__name__)	  
	  
@app.route("/transactions/<transaction>",	  methods=["PUT"])	  
def	  on_receive_events(transaction):	  
	  	  	  	  events	  =	  request.get_json()["events"]	  
	  	  	  	  for	  event	  in	  events:	  
	  	  	  	  	  	  	  	  print	  "User:	  %s	  Room:	  %s"	  %	  (event["user_id"],	  event["room_id"])	  
	  	  	  	  	  	  	  	  print	  "Event	  Type:	  %s"	  %	  event["type"]	  
	  	  	  	  	  	  	  	  print	  "Content:	  %s"	  %	  event["content"]	  
	  	  	  	  return	  jsonify({})	  
	  
if	  __name__	  ==	  "__main__":	  
	  	  	  	  app.run()	  
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Matrix Bridging with ASes

Existing App



Current Progress
•  Funded May 2014
•  Launched alpha Sept 2014
•  Entered beta Dec 2014
•  Stable v0.9 Beta May 2015
•  July 2015: v1.0 release?!
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What's next?
•  Rolling out E2E encryption
•  Reusable web UI components and improving the web 

client
•  Multi-way VoIP
•  Lots more Application Services
•  Landing V2 APIs
•  Use 3rd party IDs by default
•  Yet more performance work
•  Spec polishing
•  New server implementations!
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We need help!!
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•  We need people to try running their own 
servers and join the federation.

•  We need people to run gateways to their 
existing services

•  We need feedback on the APIs.
•  Consider native Matrix support for new 

apps
•  Follow @matrixdotorg and spread the 

word!

35	  

 



Privacy in Matrix
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Two basic types of privacy: 
 
1. Can attackers see what    
    you're saying? 
 
2. Can attackers see who  
    you're talking to, and when?
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Matrix can protect the 
contents of what you're 
saying using end-to-end 
encryption. 
 
Neither the servers nor the 
network can decrypt the data; 
only invited clients.
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Introducing Olm 
(new as of today!!!)
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https://github.com/matrix-org/olm



Olm
•  Apache License C++11 implementation of 

Axolotl, exposing a C API.

•  Axolotl is Open Whisper System's better-
than-OTR cryptographic ratchet, as used 
by TextSecure, Pond, WhatsApp etc.

•  Supports encrypted asynchronous group 
communication.

•  130KB x86-64 .so, or 208KB of asm.js
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OLM	  C	  API	  

Account	  
•  Keys	  

	  Session	  
•  Ini9al	  Key	  Exchange	  

	  Ratchet	  
	  
•  Encrypt	  
•  Decrypt	  

	  Crypto	  
	  

•  Curve25519	  
•  AES	  
•  SHA256	  
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Alice Bob
Alice and Bob both generate identity (I) & 
ephemeral (E) elliptic curve key pairs

Initial Shared Secret (ISS) =

ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)


Discard Ea
Derive chain key from ISS (HMAC)
Derive message key (K0) from chain key 
(HMAC)
Derive new chain key ß hash ratchet
M0 = Message plaintext
C0 = Authenticated Encryption of (M0, K0)
Ra0 = generate random ratchet key pair
Ja0 = incremental counter for each hash
ratchet advancement

Ia, Ea, Eb, Ra0, Ja0, C0
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Alice Bob
Compute same Initial Shared Secret =

ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)


Compute same K0
M0 = Authenticated decryption of (C0, K0)

To respond, B starts new ratchet chain:
Rb1 = generate random ratchet key pair
New Initial Shared Secret = 
    ECDH(Ra0, Rb1) ß ECDH Ratchet

C0 = Authenticated Encryption of (M, K0)
Ra0 = generate random ratchet key
Ja0 = incremental counter for each hash
ratchet advancement

Rb1, Jb1, C1





Demo!
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http://matrix.org/~markjh/olm/
javascript/demo.html



Group chat
•  Adds a 3rd type of ratchet, used to 

encrypt group messages.

•  Establish 'normal' 1:1 ratchets between 
all participants in order to exchange the 
initial secret for the group ratchet.

•  All receivers share the same group 
ratchet state to decrypt the room.
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Flexible privacy with Olm
•  Users can configure rooms to have:
– No ratchet (i.e. no crypto)
– Full PFS ratchet
– Selective ratchet

•  Deliberately re-use ratchet keys to support 
paginating partial eras of history. 

•  Up to participants to trigger the ratchet (e.g. 
when a member joins or leaves the room) 

– Per-message type ratchets
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So, what about protecting 
metadata? 

 
(i.e. hiding who's talking to who and when?)
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Matrix is all about 
pragmatically fixing today's 

vendor lock-in problem. 
 

You can't bridge existing 
networks without exposing 

who's talking to who.
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Bridges expose metadata

Existing App

Unavoidable 
Metadata leak!



That said, Matrix also 
exposes metadata on Home 

Servers:
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Home Servers expose 
metadata too



Can we do better? 
 

Apps like Pond show that you 
can obfuscate metadata quite 

effectively:
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Pond

Tor	  

Pond servers
(Tor hidden services)

Pond clients,
storing encrypted
history

Pond preserves sender privacy
through Group Signatures – only the 
client can decrypt who the message 
was from.



Matrix was designed to 
evolve and support future 
network architectures and 

privacy strategies.
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Thought Experiment: 
Could Matrix adopt a 
Pond-like strategy?
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• Move home servers onto the 
client.
• Use pond-style Tor hidden 

services for store-and-forward 
of encrypted messages.
• Migrate incrementally from 

'classic' DAG federation.

57	  
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Matrix with Pond strategy

Existing App

Tor	  



Advantages over pure Pond
•  Supports any and all Matrix clients via the 

existing standard client-server API

•  Supports decentralised conversation history 
by tunnelling HS federation over Pond

•  Supports bridging to other networks via 
existing Matrix AS API or classic Matrix 
Federation – at expense of privacy. Mitigated 
by disabling bridging/federation per-room.
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Thank you! 
 

matthew@matrix.org 
http://matrix.org  
@matrixdotorg 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Federation Design #1
•  No single point of control for chat rooms.
•  Any homeserver can publish a reference to a chat 

room (although typically the address is the 
homeserver of the user who created the room).

•  Room addresses look like:
#matrix:matrix.org

(pronounced hash-matrix-on-matrix-dot-org)

•  The IP of the matrix.org homeserver is discovered 
through DNS (SRV _matrix record if available, 
otherwise looks for port 8448 of the A record).
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Federation Design #2
•  When a user joins a room, his HS queries the HS specified in 

the room name to find a list of participating homeservers via 
a simple GET

•  Messages form a directed acyclic graph (DAG) of 
chronologicity, each crypto-signed by the origin HS

•  The user's HS pulls in messages via GETs from participating 
HSs by attempting to walk the DAG

•  Each HS caches as much history as its users (or admin) 
desires

•  When sending a message, the HS PUTs to participating 
homeservers (currently full mesh, but fan-out semantics using 
cyclical hashing in development)
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Identity Design
•  We don't want to be yet another identity system (e.g. 

JIDs)
•  So we aggregate existing 3rd party IDs (3PID) and map 

them to matrix IDs (MXIDs) by Identity Servers, 
whose use in public is strictly optional.

•  And so login and user discovery is typically done 
entirely with 3rd party IDs.

•  ID servers validate 3rd party IDs (e.g. email, MSISDN, 
Facebook, G+) and map them to MXIDs. MXIDs look 
like:

@matthew:matrix.org
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Security Design #1
•  Server-server traffic is mandatorily TLS from the outset

•  Can use official CA certs, but automagically self-sign and submit 
certs to matrix ID servers as a free but secure alternative

•  Server-client traffic mandates transport layer encryption other than 
for tinkering

•  Clients that support PKI publish their public keys, and may encrypt 
and sign their messages for E2E security.

•  "Well behaved" clients should participate in key escrow servers to 
allow private key submission for law enforcement.

•  End-to-end encryption for group chat is supported through a per-
room encryption key which is shared 1:1 between participating 
members

64	  



Security Design #2
•  SPAM is contained by mandating invite 

handshake before communication
•  Invite handshakes are throttled per user
•  Homeservers and users may be blacklisted on 

identity servers
•  ID servers authenticating 3PIDs are obligated to 

mitigate bulk registration of users via CAPTCHAs 
or domain-specific techniques (e.g. 2FA SMS for 
MSISDNs)
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•  Still in development; some early prototypes

•  "Passive AS-API" Builds on the client-server API

–  Service registers a URL for inbound events to be PUT to

–  Allows a service to register for traffic on behalf of a namespace of 
virtual users and virtual rooms

–  Adds "superuser" permissions to subscribe to arbitrary filters of 
events on the homeserver, and inject arbitrary events

–  Modeled loosely after IRC Services

•  Also: Active AS API for intercepting inbound events on a HS, 
and Storage API for exposing existing conversation DBs to 
Matrix via a HS.

Application Services: Spec & API
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•  matrix.org runs a homeserver.

•  Matrix/SMS gw AS is registered to the homeserver, 
masquerading for the 'sms.matrix.org' domain.

•  @447968722968:sms.matrix.org routes to the 
homeserver from anywhere in Matrix, which passes 
events for *:sms.matrix.org through to the AS

•  Matrix/SMS Gateway then relays via SMS 
aggregators to send SMS to +447968722968

•  The reverse path is symmetrical, with the Matrix/
SMS AS injecting events into the HS on behalf of 
@447968722968:sms.matrix.org

AS Example: Matrix/SMS Gateway 
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•  Similarly, AS can implement a SIP gateway, posing 
as a range of virtual matrix users.

•  Events such as 'm.call.invite' and 
'm.call.candidates' are PUT to the AS by the HS

•  AS converts directly into SIP signalling (reINVITEing 
to advertise new ICE candidates)

•  Media flows out-of-band to Matrix as typical 
WebRTC SRTP.

•  We've already written a basic Matrix/Verto gateway 
(using client-service API – see matrix.org/blog)

AS Example: Matrix/SIP Gateway 
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Why not XMPP?
•  We used to use XMPP (ejabberd, OpenFire, Spectrum, 

psyced, Psi, Pidgin, ASmack, Spark, XMPP.Framework)
•  We built an alternative because:

–  Single server per MUC is single point of control
–  Synchronised history is a very 2nd class citizen
–  Stanzas aren't framed or reliably delivered
–  XMPP stacks are not easy to implement in a web environment
–  Jingle is complicated and exotic
–  XML is needlessly verbose and unwieldy
–  The baseline feature-set is too minimal
–  JIDs haven't taken off like Email or MSISDNs
–  Not designed for mobile use cases (e.g. push; low bw)
–  Well documented spam and identity/security issues
–  ejabberd


